第0272章 庞加莱猜想(1 / 2)

亨利庞加莱,法国数学家、天体力学家、数学物理学家、科学哲学家,他的研究涉及数论、代数学、几何学、拓扑学、天体力学、数学物理、多复变函数论、科学哲学等许多领域。

他被公认是十九世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人,也被人称为“最后一位数学全才”。

在他留下的巨大科学遗产中,有一个属于代数拓扑学中带有基本意义的命题,这就是困扰了数学家们将近一个世纪的“庞加莱猜想”。

1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学猜想,“单连通的三维闭流形同胚于三维球面。”也即,在一个闭三维空间,假如每一条封闭的曲线都能收缩成一点,这个空间一定是一个三维的圆球。但在1905年,他发现其中的错误,修改为,“任何与n维球面同伦的n维闭流形必定同胚于n维球面”。

有人作了这样一个比喻一个无孔的橡胶膜相当于拓扑学中的二维闭曲面,而一个吹涨的气球则可以视为二维球面,二者之间的点存在着一一对应的关系,同时橡胶膜上相邻的点仍是吹涨气球上相邻的点,反之亦然。

这就是庞加莱猜想。

后来,这个猜想被推广至三维以上的空间,也被称为“高维庞加莱猜想”。

近百年来,无数数学家关注并致力于证明庞加莱猜想。

二十世纪三十年代以前,庞加莱猜想的研究只有零星几项。

英国数学家怀特海对这个问题产生了浓厚兴趣,他一度声称自己完成了证明,但不久就撤回了论文,但在这个过程中,他发现了三维流形的一些有趣特例,这些特例也被称为怀特海流形。

三十年代到六十年代之间,又有一些著名的数学家宣称解决了庞加莱猜想,著名的宾、哈肯、莫伊泽和帕帕奇拉克普罗斯均在其中。

帕帕是1964年的维布伦奖得主,他以证明了著名的“迪恩引理”而闻名于世,然而,这位聪明的希腊拓扑学家,却也最终倒在了庞加莱猜想的证明上。

在贝勒屯就流传着这样一个传说,直到去世前,帕帕仍在试图证明庞加莱猜想,临终前,他将一叠厚厚的手稿交给了一位数学家朋友。

然而,这位数学家朋友只翻了几页就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。

这一时期,拓扑学家对庞加莱猜想的研究虽没能产生他们期待的结果,但却因此发展出了低维拓扑学这门学科。

斯梅尔在六十年代初想到了一个天才的主意如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?

随后,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,他也因此获得1966年菲尔茨奖。

1983年,美国数学家弗里德曼将证明又向前推动了一步,他证出了四维空间中的庞加莱猜想,并因此获得1986年的菲尔茨奖。

虽然这一猜想的高维推论已得到解决,但三维像只拦路虎一样趴在最后一关口,向世界上最优秀的拓扑学家发出挑战。

拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具,瑟斯顿就是其中之一。他引入了几何结构的方法对三维流形进行切割,并也因此获得了1986年的菲尔茨奖。

之后,美国数学家理查德汉密尔顿提出了解决庞加莱猜想的纲领,为破解猜想奠定了基础,使得对此猜想的证明取得了重要进展。

汉密尔顿研究的方向也被称之为rii流,这是由意大利数学家里奇命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形。

早在二十年前,1976年的菲尔兹奖获